solution

Introduction

CE5

Solubility curves

solution, in chemistry, homogeneous mixture of two or more substances. The dissolving medium is called the solvent, and the dissolved material is called the solute. A solution is distinct from a colloid or a suspension.

In most common solutions, the solvent is a liquid, often water, and the solute may be a solid, gas, or liquid. For example, syrups are solutions of sugar, a solid, in water, a liquid; household ammonia is a solution of ammonia gas in water; and vinegar is a solution of acetic acid, a liquid, in water. When two liquids, e.g., water and ethanol, can be mixed in any proportions, the solvent is commonly considered to be the one present in greater proportion. Some alloys are solutions of one solid in another, as are many rocks. A mixture of gases, such as air, is usually not thought of as a solution.

Sections in this article:

Heat of Solution

The addition of some solutes to a solvent will raise the temperature of the solution, while others may lower the temperature and still others will have no noticeable effect. This behavior depends on the heat of solution of the solute in the given solvent. The heat of solution, i.e., the amount of heat given off or absorbed during the process of solution, is equal to the difference between the energy that must be supplied to break up the crystals of the solute and the energy that is released when the solute particles are taken into solution by the solvent (see enthalpy). If the heat of solution is negative (i.e., more energy is required to break up the crystal than is released in forming the solution), then the temperature will decrease; if the heat of solution is positive, the temperature will increase.

Characteristics of Solutions

The solute particles in a solution are generally of molecular size or smaller, much smaller than those in a colloid or a suspension. The solute particles cannot be observed even with an ultramicroscope. They do not settle out from the solvent on standing, and they cannot be separated from the solvent by physical means, such as filtration or centrifugation. On the other hand, a solution differs from a compound in that its components can occur in continuously varying proportions, within certain limits (although within a given solution they are present in the same proportions throughout the solution), while the components of a compound can occur only in certain fixed proportions.

The addition of solute affects the boiling point, freezing point, and vapor pressure of the solution, in general raising the boiling point, depressing the freezing point, and lowering the vapor pressure (see Raoult's law). A number of substances (acids, bases, and salts) exhibit characteristic behavior in aqueous solution. These substances dissociate in water to form positive and negative ions that enable the solution to conduct electricity. Such solutions are called electrolytic (see electrolyte).

The proportion of solute to solvent in a given solution is expressed by the concentration of the solution. Concentrations may be stated in a number of ways, such as giving the amount of solute contained in a given volume of solution or the amount dissolved in a given mass of solvent. A solution having a relatively high concentration is said to be concentrated, and a solution having a low concentration is said to be dilute.

In many solutions the concentration has a maximum limit that depends on various factors, such as temperature, pressure, and the nature of the solvent. The maximum concentration is called the solubility of the solute under those conditions. When a solution contains the maximum amount of solute, it is said to be saturated; if it contains less than that amount, it is unsaturated.

The most obvious factor affecting solubility is the nature of the solvent. Ordinary table salt (sodium chloride) is soluble in water, but only slightly soluble in ethanol, and insoluble in diethyl ether. Temperature is also important in determining solubility. Solids are usually more soluble at higher temperatures; more salt will dissolve in warm water than in an equal amount of cold water. Graphs showing the solubility of different solids as a function of temperature are called solubility curves and are very useful in chemical analysis. Solubility also depends on pressure, especially in the case of gases, which are more soluble at higher pressures.

Under certain conditions a solution may be made to contain more solute than a saturated solution at the same temperature and pressure; such a solution is called supersaturated. If even a single crystal of undissolved solute is added to a supersaturated solution, all the excess solute above the normal solubility concentration will immediately crystallize out of the solution.

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Chemistry: General