wave, in physics

Introduction

wave, in physics, the transfer of energy by the regular vibration, or oscillatory motion, either of some material medium or by the variation in magnitude of the field vectors of an electromagnetic field (see electromagnetic radiation). Many familiar phenomena are associated with energy transfer in the form of waves. Sound is a longitudinal wave that travels through material media by alternatively forcing the molecules of the medium closer together, then spreading them apart. Light and other forms of electromagnetic radiation travel through space as transverse waves; the displacements at right angles to the direction of the waves are the field intensity vectors rather than motions of the material particles of some medium. With the development of the quantum theory, it was found that particles in motion also have certain wave properties, including an associated wavelength and frequency related to their momentum and energy. Thus, the study of waves and wave motion has applications throughout the entire range of physical phenomena.

Sections in this article:

Wave Fronts and Rays

In the graphic representation and analysis of wave behavior, two concepts are widely used—wave fronts and rays. A wave front is a line representing all parts of a wave that are in phase and an equal number of wavelengths from the source of the wave. The shape of the wave front depends upon the nature of the source; a point source will emit waves having circular or spherical wave fronts, while a large, extended source will emit waves whose wave fronts are effectively flat, or plane. A ray is a line extending outward from the source and representing the direction of propagation of the wave at any point along it. Rays are perpendicular to wave fronts.

Parameters of Waves

The maximum displacement of the medium in either direction is the amplitude of the wave. The distance between successive crests or successive troughs (corresponding to maximum displacements in the same direction) is the wavelength of the wave. The frequency of the wave is equal to the number of crests (or troughs) that pass a given fixed point per unit of time. Closely related to the frequency is the period of the wave, which is the time lapse between the passage of successive crests (or troughs). The frequency of a wave is the inverse of the period.

One full wavelength of a wave represents one complete cycle, that is, one complete vibration in each direction. The various parts of a cycle are described by the phase of the wave; all waves are referenced to an imaginary synchronous motion in a circle; thus the phase is measured in angular degrees, one complete cycle being 360°. Two waves whose corresponding parts occur at the same time are said to be in phase. If the two waves are at different parts of their cycles, they are out of phase. Waves out of phase by 180° are in phase opposition. The various phase relationships between combining waves determines the type of interference that takes place.

The speed of a wave is determined by its wavelength λ and its frequency ν, according to the equation v=λν, where v is the speed, or velocity. Since frequency is inversely related to the period T, this equation also takes the form v=λ/T. The speed of a wave tells how quickly the energy it carries is being transferred. It is important to note that the speed is that of the wave itself and not of the medium through which it is traveling. The medium itself does not move except to oscillate as the wave passes.

Classification of Waves

Waves may be classified according to the direction of vibration relative to that of the energy transfer. In longitudinal, or compressional, waves the vibration is in the same direction as the transfer of energy; in transverse waves the vibration is at right angles to the transfer of energy; in torsional waves the vibration consists of a twisting motion as the medium rotates back and forth around the direction of energy transfer. The three types of waves are illustrated by an example in which a coil spring is held stretched out by two persons. If the person holding one end pulls a few coils toward himself and releases them, a longitudinal wave will travel along the spring, with coils alternately being pressed closer together, then stretched apart, as the wave passes. If the first person then shakes his end up and down or from side to side, a transverse wave will travel along the spring. Finally, if he grabs several coils and twists them around the axis of the spring, a torsional wave will travel along the spring.

A wave may be a combination of types. Water waves in deep water are mainly transverse. However, as they approach a shore they interact with the bottom and acquire a longitudinal component. When the longitudinal component becomes very large compared to the transverse component, the wave breaks.

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Physics